The Pinterest Approach to Machine Learning

author: Grace Huang, Pinterest
published: Sept. 24, 2018,   recorded: August 2018,   views: 7
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Pinterest’s mission is to help you discover and do what you love—whether that’s finding the perfect recipe for your family dinner or pulling together an outfit. To achieve this level of personalization, and with 200M+ active users and billions of recommendations every day, we live on machine learning. From object detection and classification to ads auction model tuning, Machine learning is used in numerous components of our system. With limited resources as a medium-sized company, but fast growing demand from passionate users, we have to balance cutting edge technology advancement with practical system implementation that can be put in place within a short amount of time. In this talk, I will review Pinterest’s approach of a careful balance between simplicity and functionality, and how we reached our current stage of system design.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: