Barycentric coordinates for ordinal sentiment classification

author: Brian Keith, Universidad Católica del Norte
published: Dec. 1, 2017,   recorded: August 2017,   views: 669

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Sentiment analysis and opinion mining is an area that has experienced considerable growth over the last decade. This area of research attempts to determine the feelings, opinions, emotions, among other things, of people on something or someone. To do this, techniques from natural language processing and machine learning algorithms are mainly used. This article discusses the problem of determining the polarity of reviews using a novel ordinal classification technique called Barycentric Coordinates for Ordinal Classification (BCOC). The aim of this analysis is to explore the viability of application of BCOC on the field of sentiment analysis. This new method is based on the hypothesis that the ordinal classes can be represented geometrically inside a convex polygon on the real plane by using barycentric coordinates. A set of experiments were conducted to evaluate the capability and performance of the proposed approach relative to a baseline, using accuracy as the general measure of performance. The experiments include testing on generic ordinal classification data sets and on multi-class sentiment analysis data sets. In general the method is competitive with the state of the art. The results show no significant difference over the baseline in the case of generic ordinal classification and sentiment analysis with three classes. However, in the case of sentiment analysis with four classes the results show improvements in the overall accuracy.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: