Accelerating Innovation Through Analogy Mining

author: Tom Hope, School of Computer Science and Engineering, The Hebrew University of Jerusalem
published: Oct. 9, 2017,   recorded: August 2017,   views: 4
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

The availability of large idea repositories (e.g., the U.S. patent database) could significantly accelerate innovation and discovery by providing people with inspiration from solutions to analogous problems. However, finding useful analogies in these large, messy, real-world repositories remains a persistent challenge for either human or automated methods. Previous approaches include costly hand-created databases that have high relational structure (e.g., predicate calculus representations) but are very sparse. Simpler machine-learning/information-retrieval similarity metrics can scale to large, natural-language datasets, but struggle to account for structural similarity, which is central to analogy. In this paper we explore the viability and value of learning simpler structural representations, specifically, "problem schemas", which specify the purpose of a product and the mechanisms by which it achieves that purpose. Our approach combines crowdsourcing and recurrent neural networks to extract purpose and mechanism vector representations from product descriptions. We demonstrate that these learned vectors allow us to find analogies with higher precision and recall than traditional information-retrieval methods. In an ideation experiment, analogies retrieved by our models significantly increased people's likelihood of generating creative ideas compared to analogies retrieved by traditional methods. Our results suggest a promising approach to enabling computational analogy at scale is to learn and leverage weaker structural representations.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: