User Behavior Modeling with Large-Scale Graph Analysis

author: Alex Beutel, Research at Google, Google, Inc.
published: Oct. 9, 2017,   recorded: August 2017,   views: 1184

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Can we model how fraudsters work to distinguish them from normal users? Can we predict not just which movie a person will like, but also why? How can we find when a student will become confused or where patients in a hospital system are getting infected? How can we effectively model large attributed graphs of complex interactions? In this dissertation we understand user behavior through modeling graphs. Online, users interact not just with each other in social networks, but also with the world around them—supporting politicians, watching movies, buying clothing, searching for restaurants and finding doctors. These interactions often include insightful contextual information as attributes, such as the time of the interaction and ratings or reviews about the interaction. The breadth of interactions and contextual information being stored presents a new frontier for graph modeling. To improve our modeling of user behavior, we focus on three broad challenges: (1) modeling abnormal behavior, (2) modeling normal behavior and (3) scaling machine learning. To more effectively model and detect abnormal behavior, we model how fraudsters work, catching previously undetected fraud on Facebook, Twitter, and Tencent Weibo and improving classification accuracy by up to 68%. By designing flexible and interpretable models of normal behavior, we can predict why you will like a particular movie. Last, we scale modeling of large hypergraphs by designing machine learning systems that scale to hundreds of gigabytes of data, billions of parameters, and are 26 times faster than previous methods. This dissertation provides a foundation for making graph modeling useful for many other applications as well as offers new directions for designing more powerful and flexible models.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: