Patient Subtyping via Time-­Aware LSTM Network

author: Inci M. Baytas, Department of Computer Science and Engineering, Michigan State University
published: Oct. 9, 2017,   recorded: August 2017,   views: 2
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

In the study of various diseases, heterogeneity among patients usually leads to different progression patterns and may require different types of therapeutic intervention. Therefore, it is important to study patient subtyping, which is grouping of patients into disease characterizing subtypes. Subtyping from complex patient data is challenging because of the information heterogeneity and temporal dynamics. Long-Short Term Memory (LSTM) has been successfully used in many domains for processing sequential data, and recently applied for analyzing longitudinal patient records. The LSTM units are designed to handle data with constant elapsed times between consecutive elements of a sequence. Given that time lapse between successive elements in patient records can vary from days to months, the design of traditional LSTM may lead to suboptimal performance. In this paper, we propose a novel LSTM unit called Time-Aware LSTM (T-LSTM) to handle irregular time intervals in longitudinal patient records. We learn a subspace decomposition of the cell memory which enables time decay to discount the memory content according to the elapsed time. We propose a patient subtyping model that leverages the proposed T-LSTM in an auto-encoder to learn a powerful single representation for sequential records of patients, which are then used to cluster patients into clinical subtypes. Experiments on synthetic and real world datasets show that the proposed T-LSTM architecture captures the underlying structures in the sequences with time irregularities.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: