Asymmetric Transitivity Preserving Graph Embedding

author: Ziwei Zhang, Tsinghua University
published: Sept. 25, 2016,   recorded: August 2016,   views: 39
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Graph embedding algorithms embed a graph into a vector space where the structure and the inherent properties of the graph are preserved. The existing graph embedding methods cannot preserve the asymmetric transitivity well, which is a critical property of directed graphs. Asymmetric transitivity depicts the correlation among directed edges, that is, if there is a directed path from u to v, then there is likely a directed edge from u to v. Asymmetric transitivity can help in capturing structures of graphs and recovering from partially observed graphs. To tackle this challenge, we propose the idea of preserving asymmetric transitivity by approximating high-order proximity which are based on asymmetric transitivity. In particular, we develop a novel graph embed-ding algorithm, High-Order Proximity preserved Embedding (HOPE for short), which is scalable to preserve high-order proximities of large scale graphs and capable of capturing the asymmetric transitivity. More specifically, we first derive a general formulation that cover multiple popular high-order proximity measurements, then propose a scalable embedding algorithm to approximate the high-order proximity measurements based on their general formulation. Moreover, we provide a theoretical upper bound on the RMSE (Root Mean Squared Error) of the approximation. Our empirical experiments on a synthetic dataset and three real-world datasets demonstrate that HOPE can approximate the high-order proximities significantly better than the state-of-art algorithms and outperform the state-of-art algorithms in tasks of reconstruction, link prediction and vertex recommendation.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: