Revisiting Random Binning Feature: Fast Convergence and Strong Parallelizability

author: Lingfei Wu, Department of Computer Science, College of William & Mary
published: Sept. 27, 2016,   recorded: August 2016,   views: 1372
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Kernel method has been developed as one of the standard approaches for nonlinear learning, which however, does not scale to large data set due to its quadratic complexity in the number of samples. A number of kernel approximation methods have thus been proposed in the recent years, among which the random features method gains much popularity due to its simplicity and direct reduction of non-linear problem to a linear one. Different random feature functions have since been proposed to approximate a variety of kernel functions. Among them the Random Binning (RB) feature, proposed in the first random-feature paper [21], has drawn much less attention than the Random Fourier (RF) feature proposed also in [21]. In this work, we observe that the RB features, with right choice of optimization solver, could be orders-of-magnitude more efficient than other random features and kernel approximation methods under the same requirement of accuracy. We thus propose the first analysis of RB from the perspective of optimization, which by interpreting RB as a Randomized Block Coordinate Descent in the infinite-dimensional space, gives a faster convergence rate compared to that of other random features. In particular, we show that by drawing R random grids with at least κ number of non-empty bins per grid in expectation, RB method achieves a convergence rate of O(1/(κR)), which not only sharpens its O(1/√R) rate from Monte Carlo analysis, but also shows a κ times speedup over other random features under the same analysis framework. In addition, we demonstrate another advantage of RB in the L1-regularized set-ting, where unlike other random features, a RB-based Coordinate Descent solver can be parallelized with guaranteed speedup proportional to κ. Our extensive experiments demonstrate the superior performance of the RB features over other random features and ker-nel approximation methods.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: