Exploiting the Computation Graph for Large Scale Distributed Machine Learning

author: S.V.N. Vishwanathan, Department of Computer Science, University of California Santa Cruz
published: Oct. 12, 2016,   recorded: August 2016,   views: 1292
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Many machine learning algorithms minimize a regularized risk. It is well known that stochastic optimization algorithms are both theoretically and practically well motivated for regularized risk minimization. Unfortunately, stochastic optimization is not easy to parallelize. In this talk, we take a radically new approach and show that working with the saddle-point problem that arises out of the Lagrangian has a very specific computational graph structure which can be exploited to allow for a natural partitioning of the parameters across multiple processors. This allows us to derive a new parallel stochastic optimization algorithm for regularized risk minimization. Joint work with: Inderjit Dhillon, Cho-Jui Hsieh, Shihao Ji, Shin Matsushima, Parameshwaran Raman, Hsiang-Fu Yu, and Hyokun Yun.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: