Lexis: An Optimization Framework for Discovering the Hierarchical Structure of Sequential Data

author: Payam Siyari, Georgia Institute of Technology
published: Sept. 27, 2016,   recorded: August 2016,   views: 1563
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Data represented as strings abounds in biology, linguistics, document mining, web search and many other fields. Such data often have a hierarchical structure, either because they were artificially designed and composed in a hierarchical manner or because there is an underlying evolutionary process that creates repeatedly more complex strings from simpler substrings. We propose a framework, referred to as Lexis, that produces an optimized hierarchical representation of a given set of “target” strings. The resulting hierarchy, “Lexis-DAG”, shows how to construct each target through the concatenation of intermediate substrings, minimizing the total number of such concatenations or DAG edges. The Lexis optimization problem is related to the smallest grammar problem. After we prove its NP-hardness for two cost formulations, we propose an efficient greedy algorithm for the construction of Lexis-DAGs. We also consider the problem of identifying the set of intermediate nodes (substrings) that collectively form the “core” of a Lexis-DAG, which is important in the analysis of Lexis-DAGs. We show that the Lexis framework can be applied in diverse applications such as optimized synthesis of DNA fragments in genomic libraries, hierarchical structure discovery in protein sequences, dictionary-based text compression, and feature extraction from a set of documents.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: