CatchTartan: Representing and Summarizing Dynamic Multicontextual Behaviors

author: Meng Jiang, Department of Computer Science, University of Illinois at Urbana-Champaign
published: Sept. 25, 2016,   recorded: August 2016,   views: 17
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Representing and summarizing human behaviors with rich contexts facilitates behavioral sciences and user-oriented services. Traditional behavioral modeling represents a behavior as a tuple in which each element is one contextual factor of one type, and the tensor-based summaries look for high-order dense blocks by clustering the values (including timestamps) in each dimension. However, the human behaviors are multicontextual and dynamic: (1) each behavior takes place within multiple contexts in a few dimensions, which requires the representation to enable non-value and set-values for each dimension; (2) many behavior collections, such as tweets or papers, evolve over time. In this paper, we represent the behavioral data as a two-level matrix (temporal-behaviors by dimensional-values) and propose a novel representation for behavioral summary called Tartan that includes a set of dimensions, the values in each dimension, a list of consecutive time slices and the behaviors in each slice. We further develop a propagation method CATCHTAR-TAN to catch the dynamic multicontextual patterns from the temporal multidimensional data in a principled and scalable way: it determines the meaningfulness of updating every element in the Tartan by minimizing the encoding cost in a compression manner. CATCHTARTAN outperforms the baselines on both the accuracy and speed. We apply CATCHTARTAN to four Twitter datasets up to 10 million tweets and the DBLP data, providing comprehensive summaries for the events, human life and scientific development.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: