Generalized Hierarchical Sparse Model for Arbitrary-Order Interactive Antigenic Sites Identification

author: Lei Han, Department of Statistics, Rutgers, The State University of New Jersey
published: Sept. 27, 2016,   recorded: August 2016,   views: 1335
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Recent statistical evidence has shown that a regression model by incorporating the interactions among the original covariates (features) can significantly improve the interpretability for biological data. One major challenge is the exponentially expanded feature space when adding high-order feature interactions to the model. To tackle the huge dimensionality, Hierarchical Sparse Models (HSM) are developed by enforcing sparsity under heredity structures in the interactions among the covariates. However, existing methods only consider pairwise interactions, making the discovery of important high-order interactions a non-trivial open problem. In this paper, we propose a Generalized Hierarchical Sparse Model (GHSM) as a generalization of the HSM models to learn arbitrary-order inter-actions. The GHSM applies the l1 penalty to all the model coefficients under a constraint that given any covariate, if none of its associated kth-order interactions contribute to the regression model, then neither do its associated higher-order interactions. The resulting objective function is non-convex with a challenge lying in the coupled variables appearing in the arbitrary-order hierarchical constraints and we devise an efficient optimization algorithm to directly solve it. Specifically, we decouple the variables in the constraints via both the GIST and ADMM methods into three subproblems, each of which is proved to admit an efficiently analytical solution. We evaluate the GHSM method in both synthetic problem and the antigenic sites identification problem for the flu virus data, where we expand the feature space up to the 5th-order interactions. Empirical results demonstrate the effectiveness and efficiency of the proposed method and the learned high-order interactions have meaningful synergistic covariate patterns in the virus antigenicity.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: