Evaluating Causal Models by Comparing Interventional Distributions

author: Dan Garant, College of Information and Computer Sciences, University of Massachusetts Amherst
published: Oct. 12, 2016,   recorded: August 2016,   views: 1215
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

The predominant method for evaluating the quality of causal models is to measure the graphical accuracy of the learned model structure. We present an alternative method for evaluating causal models that directly measures the accuracy of estimated interventional distributions. We contrast such distributional measures with structural measures, such as structural Hamming distance and structural intervention distance, showing that structural measures often correspond poorly to the accuracy of estimated interventional distributions. We use a number of real and synthetic datasets to illustrate various scenarios in which structural measures provide misleading results with respect to algorithm selection and parameter tuning, and we recommend that distributional measures become the new standard for evaluating causal models.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: