Graph Wavelets via Sparse Cuts

author: Arlei Lopes da Silva, Department of Computer Science, University of California, Santa Barbara
published: Sept. 25, 2016,   recorded: August 2016,   views: 1473
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Modeling information that resides on vertices of large graphs is a key problem in several real-life applications, ranging from social networks to the Internet-of-things. Signal Processing on Graphs and, in particular, graph wavelets can exploit the intrinsic smoothness of these datasets in order to represent them in a compact and accurate manner. However, how to discover wavelet bases that capture the geometry of the data with respect to the signal as well as the graph structure remains an open problem. In this paper, we study the problem of computing graph wavelet bases via sparse cuts in order to produce low-dimensional encodings of data-driven bases. This problem is connected to known hard problems in graph theory (e.g. multiway cuts) and thus requires an efficient heuristic. We formulate the basis discovery task as a relaxation of a vector optimization problem, which leads to an elegant solution as a regularized eigenvalue computation. Moreover, we propose several strategies in order to scale our algorithm to large graphs. Experimental results show that the proposed algorithm can effectively encode both the graph structure and signal, producing compressed and accurate representations for vertex values in a wide range of datasets (e.g. sensor and gene net-works) and significantly outperforming the best baseline.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: