New Algorithms for Parking Demand Management and a City-Scale Deployment

author: Onno Zoeter, Xerox Research Centre Europe, Xerox
published: Oct. 7, 2014,   recorded: August 2014,   views: 23
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

On-street parking, just as any publicly owned utility, is used inefficiently if access is free or priced very far from market rates. This paper introduces a novel demand management solution: using data from dedicated occupancy sensors an iteration scheme updates parking rates to better match demand. The new rates encourage parkers to avoid peak hours and peak locations and reduce congestion and underuse. The solution is deliberately simple so that it is easy to understand, easily seen to be fair and leads to parking policies that are easy to remember and act upon. We study the convergence properties of the iteration scheme and prove that it converges to a reasonable distribution for a very large class of models. The algorithm is in use to change parking rates in over 6000 spaces in downtown Los Angeles since June 2012 as part of the LA Express Park project. Initial results are encouraging with a reduction of congestion and underuse, while in more locations rates were decreased than increased.

See Also:

Download slides icon Download slides: kdd2014_zoeter_parking_demand_01.pdf (2.1┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: