Filling Context-Ad Vocabulary Gaps with Click Logs

author: Yukihiro Tagami, Yahoo! Research Japan
published: Oct. 7, 2014,   recorded: August 2014,   views: 1978
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Contextual advertising is a form of textual advertising usually displayed on third party Web pages. One of the main problems with contextual advertising is determining how to select ads that are relevant to the page content and/or the user information in order to achieve both effective advertising and a positive user experience. Typically, the relevance of an ad to page content is indicated by a tf-idf score that measures the word overlap between the page and the ad content, so this problem is transformed into a similarity search in a vector space. However, such an approach is not useful if the vocabulary used on the page is expected to be different from that in the ad. There have been studies proposing the use of semantic categories or hidden classes to overcome this problem. With these approaches it is necessary to expand the ad retrieval system or build new index to handle the categories or classes, and it is not always easy to maintain the number of categories and classes required for business needs. In this work, we propose a translation method that learns the mapping of the contextual information to the textual features of ads by using past click data. The contextual information includes the user's demographic information and behavioral information as well as page content information. The proposed method is able to retrieve more preferable ads while maintaining the sparsity of the inverted index and the performance of the ad retrieval system. In addition, it is easy to implement and there is no need to modify an existing ad retrieval system. We evaluated this approach offline on a data set based on logs from an ad network. Our method achieved better results than existing methods. We also applied our approach with a real ad serving system and compared the online performance using A/B testing. Our approach achieved an improvement over the existing production system.

See Also:

Download slides icon Download slides: kdd2014_tagami_vocabulary_gaps_01.pdf (953.8┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: