A Hazard Based Approach to User Return Time Prediction

author: Komal Kapoor, Department of Computer Science and Engineering, University of Minnesota
published: Oct. 7, 2014,   recorded: August 2014,   views: 1774
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

In the competitive environment of the internet, retaining and growing one's user base is of major concern to most web services. Furthermore, the economic model of many web services is allowing free access to most content, and generating revenue through advertising. This unique model requires securing user time on a site rather than the purchase of good which makes it crucially important to create new kinds of metrics and solutions for growth and retention efforts for web services. In this work, we address this problem by proposing a new retention metric for web services by concentrating on the rate of user return. We further apply predictive analysis to the proposed retention metric on a service, as a means for characterizing lost customers. Finally, we set up a simple yet effective framework to evaluate a multitude of factors that contribute to user return. Specifically, we define the problem of return time prediction for free web services. Our solution is based on the Cox's proportional hazard model from survival analysis. The hazard based approach offers several benefits including the ability to work with censored data, to model the dynamics in user return rates, and to easily incorporate different types of covariates in the model. We compare the performance of our hazard based model in predicting the user return time and in categorizing users into buckets based on their predicted return time, against several baseline regression and classification methods and find the hazard based approach to be superior.

See Also:

Download slides icon Download slides: kdd2014_kapoor_user_return_time_01.pdf (746.9┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: