Clustering and Projected Clustering with Adaptive Neighbors

author: Heng Huang, Department of Computer Science and Engineering, University of Texas at Arlington
published: Oct. 7, 2014,   recorded: August 2014,   views: 2473
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Many clustering methods partition the data groups based on the input data similarity matrix. Thus, the clustering results highly depend on the data similarity learning. Because the similarity measurement and data clustering are often conducted in two separated steps, the learned data similarity may not be the optimal one for data clustering and lead to the suboptimal results. In this paper, we propose a novel clustering model to learn the data similarity matrix and clustering structure simultaneously. Our new model learns the data similarity matrix by assigning the adaptive and optimal neighbors for each data point based on the local distances. Meanwhile, the new rank constraint is imposed to the Laplacian matrix of the data similarity matrix, such that the connected components in the resulted similarity matrix are exactly equal to the cluster number. We derive an efficient algorithm to optimize the proposed challenging problem, and show the theoretical analysis on the connections between our method and the K-means clustering, and spectral clustering. We also further extend the new clustering model for the projected clustering to handle the high-dimensional data. Extensive empirical results on both synthetic data and real-world benchmark data sets show that our new clustering methods consistently outperforms the related clustering approaches.

See Also:

Download slides icon Download slides: kdd2014_huang_adaptive_neighbors_01.pdf (1.4┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Reviews and comments:

Comment1 Reyes, August 14, 2019 at 8:26 a.m.:

Meanwhile, the new rank constraint is imposed to the Laplacian matrix of the data similarity matrix, such that the connected components in the resulted similarity matrix are exactly equal to the cluster number.
https://bulletforce.online/

Write your own review or comment:

make sure you have javascript enabled or clear this field: