Topic-Factorized Ideal Point Estimation Model for Legislative Voting Network

author: Yupeng Gu, College of Computer and Information Science, Northeastern University
published: Oct. 7, 2014,   recorded: August 2014,   views: 1639
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Ideal point estimation that estimates legislators' ideological positions and understands their voting behavior has attracted studies from political science and computer science. Typically, a legislator is assigned a global ideal point based on her voting or other social behavior. However, it is quite normal that people may have different positions on different policy dimensions. For example, some people may be more liberal on economic issues while more conservative on cultural issues. In this paper, we propose a novel topic-factorized ideal point estimation model for a legislative voting network in a unified framework. First, we model the ideal points of legislators and bills for each topic instead of assigning them to a global one. Second, the generation of topics are guided by the voting matrix in addition to the text information contained in bills. A unified model that combines voting behavior modeling and topic modeling is presented, and an iterative learning algorithm is proposed to learn the topics of bills as well as the topic-factorized ideal points of legislators and bills. By comparing with the state-of-the-art ideal point estimation models, our method has a much better explanation power in terms of held-out log-likelihood and other measures. Besides, case studies show that the topic-factorized ideal points coincide with human intuition. Finally, we illustrate how to use these topic-factorized ideal points to predict voting results for unseen bills.

See Also:

Download slides icon Download slides: kdd2014_gu_voting_network_01.pdf (891.9┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: