Clustered Graph Randomization: Network Exposure to Multiple Universes

author: Johan Ugander, Center for Applied Mathematics, Cornell University
published: Sept. 27, 2013,   recorded: August 2013,   views: 271
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

A/B testing is a standard approach for evaluating the effect of online experiments; the goal is to estimate the `average treatment effect' of a new feature or condition by exposing a sample of the overall population to it. A drawback with A/B testing is that it is poorly suited for experiments involving social interference, when the treatment of individuals spills over to neighboring individuals along an underlying social network. In this work, we propose a novel methodology using graph clustering to analyze average treatment effects under social interference. To begin, we characterize graph-theoretic conditions under which individuals can be considered to be `network exposed' to an experiment. We then show how graph cluster randomization admits an efficient exact algorithm to compute the probabilities for each vertex being network exposed under several of these exposure conditions. Using these probabilities as inverse weights, a Horvitz-Thompson estimator can then provide an effect estimate that is unbiased, provided that the exposure model has been properly specified.
Given an estimator that is unbiased, we focus on minimizing the variance. First, we develop simple sufficient conditions for the variance of the estimator to be asymptotically small in n, the size of the graph. However, for general randomization schemes, this variance can be lower bounded by an exponential function of the degrees of a graph. In contrast, we show that if a graph satisfies a restricted-growth condition on the growth rate of neighborhoods, then there exists a natural clustering algorithm, based on vertex neighborhoods, for which the variance of the estimator can be upper bounded by a linear function of the degrees. Thus we show that proper cluster randomization can lead to exponentially lower estimator variance when experimentally measuring average treatment effects under interference.

See Also:

Download slides icon Download slides: kdd2013_ugander_multiple_universes_01.pdf (6.7┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: