Transfer Metric Learning by Learning Task Relationships

author: Yu Zhang, The Hong Kong University of Science and Technology
published: Oct. 1, 2010,   recorded: July 2010,   views: 178
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Distance metric learning plays a very crucial role in many data mining algorithms because the performance of an algorithm relies heavily on choosing a good metric. However, the labeled data available in many applications is scarce and hence the metrics learned are often unsatisfactory. In this paper, we consider a transfer learning setting in which some related source tasks with labeled data are available to help the learning of the target task. We first propose a convex formulation for multi-task metric learning by modeling the task relationships in the form of a task covariance matrix. Then we regard transfer learning as a special case of multi-task learning and adapt the formulation of multi-task metric learning to the transfer learning setting for our method, called transfer metric learning (TML). In TML, we learn the metric and the task covariances between the source tasks and the target task under a unified convex formulation. To solve the convex optimization problem, we use an alternating method in which each subproblem has an efficient solution. Experimental results on some commonly used transfer learning applications demonstrate the effectiveness of our method.

See Also:

Download slides icon Download slides: kdd2010_zhang_tmlltr_01.pdf (578.8┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: