Multi-Label Learning by Exploiting Label Dependency

author: Min-Ling Zhang, Southeast University
published: Oct. 1, 2010,   recorded: July 2010,   views: 3618
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

In multi-label learning, each training example is associated with a set of labels and the task is to predict the proper label set for the unseen example. Due to the tremendous (exponential) number of possible label sets, the task of learning from multi-label examples is rather challenging. Therefore, the key to successful multi-label learning is how to effectively exploit correlations between different labels to facilitate the learning process. In this paper, we propose to use a Bayesian network structure to efficiently encode the conditional dependencies of the labels as well as the feature set, with the feature set as the common parent of all labels. To make it practical, we give an approximate yet efficient procedure to find such a network structure. With the help of this network, multi-label learning is decomposed into a series of single-label classification problems, where a classifier is constructed for each label by incorporating its parental labels as additional features. Label sets of unseen examples are predicted recursively according to the label ordering given by the network. Extensive experiments on a broad range of data sets validate the effectiveness of our approach against other well-established methods.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: