Flexible Constrained Spectral Clustering

author: Xiang Wang, Department of Computer Science, University of California, Davis
published: Oct. 1, 2010,   recorded: July 2010,   views: 3550


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Constrained clustering has been well-studied for algorithms like K-means and hierarchical agglomerative clustering. However, how to encode constraints into spectral clustering remains a developing area. In this paper, we propose a flexible and generalized framework for constrained spectral clustering. In contrast to some previous efforts that implicitly encode Must-Link and Cannot-Link constraints by modifying the graph Laplacian or the resultant eigenspace, we present a more natural and principled formulation, which preserves the original graph Laplacian and explicitly encodes the constraints. Our method offers several practical advantages: it can encode the degree of belief (weight) in Must-Link and Cannot-Link constraints; it guarantees to lower-bound how well the given constraints are satisfied using a user-specified threshold; and it can be solved deterministically in polynomial time through generalized eigendecomposition. Furthermore, by inheriting the objective function from spectral clustering and explicitly encoding the constraints, much of the existing analysis of spectral clustering techniques is still valid. Consequently our work can be posed as a natural extension to unconstrained spectral clustering and be interpreted as finding the normalized min-cut of a labeled graph. We validate the effectiveness of our approach by empirical results on real-world data sets, with applications to constrained image segmentation and clustering benchmark data sets with both binary and degree-of-belief constraints.

See Also:

Download slides icon Download slides: kdd2010_wang_fcsc_01.pdf (800.2┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: