The community-search problem and how to plan a successful cocktail party

author: Mauro Sozio, Max Planck Institute for Computer Science, Max Planck Institute
published: Oct. 1, 2010,   recorded: July 2010,   views: 3923


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


A lot of research in graph mining has been devoted in the discovery of communities. Most of the work has focused in the scenario where communities need to be discovered with only reference to the input graph. However, for many interesting applications one is interested in finding the community formed by a given set of nodes. In this paper we study a query-dependent variant of the community-detection problem, which we call the community-search problem: given a graph G, and a set of query nodes in the graph, we seek to find a subgraph of G that contains the query nodes and it is densely connected.

We motivate a measure of density based on minimum degree and distance constraints, and we develop an optimum greedy algorithm for this measure. We proceed by characterizing a class of monotone constraints and we generalize our algorithm to compute optimum solutions satisfying any set of monotone constraints. Finally we modify the greedy algorithm and we present two heuristic algorithms that find communities of size no greater than a specified upper bound. Our experimental evaluation on real datasets demonstrates the efficiency of the proposed algorithms and the quality of the solutions we obtain.

See Also:

Download slides icon Download slides: kdd2010_sozio_csp_01.pdf (1010.8 KB)

Download slides icon Download slides: kdd2010_sozio_csp_01.ppt (2.3 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: