Combined Regression and Ranking

author: D. Sculley, Research at Google, Google, Inc.
published: Oct. 1, 2010,   recorded: July 2010,   views: 5305


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Many real-world data mining tasks require the achievement of two distinct goals when applied to unseen data: first, to induce an accurate preference ranking, and second to give good regression performance. In this paper, we give an efficient and effective Combined Regression and Ranking method (CRR) that optimizes regression and ranking objectives simultaneously. We demonstrate the effectiveness of CRR for both families of metrics on a range of large-scale tasks, including click prediction for online advertisements. Results show that CRR often achieves performance equivalent to the best of both ranking-only and regression-only approaches. In the case of rare events or skewed distributions, we also find that this combination can actually improve regression performance due to the addition of informative ranking constraints.

See Also:

Download slides icon Download slides: kdd2010_sculley_crr_01.pdf (739.6┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: