DUST: A Generalized Notion of Similarity between Uncertain Time Series

author: Smruti Ranjan Sarangi, IBM India Research Lab
published: Oct. 1, 2010,   recorded: July 2010,   views: 3354
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Large-scale sensor deployments and an increased use of privacy-preserving transformations have led to an increasing interest in mining uncertain time series data. Traditional distance measures such as Euclidean distance or dynamic time warping are not always effective for analyzing uncertain time series data. Recently, some measures have been proposed to account for uncertainty in time series data. However, we show in this paper that their applicability is limited. In specific, these approaches do not provide an intuitive way to compare two uncertain time series and do not easily accommodate multiple error functions. In this paper, we provide a theoretical framework that generalizes the notion of similarity between uncertain time series. Secondly, we propose DUST, a novel distance measure that accommodates uncertainty and degenerates to the Euclidean distance when the distance is large compared to the error. We provide an extensive experimental validation of our approach for the following applications: classification, top-k motif search, and top-k nearest-neighbor queries.

See Also:

Download slides icon Download slides: kdd2010_sarangi_dust_01.ppt (2.2┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: