Fast Euclidean Minimum Spanning Tree: Algorithm, Analysis, and Applications
published: Oct. 1, 2010, recorded: July 2010, views: 9083
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
The Euclidean Minimum Spanning Tree problem has applications in a wide range of fields, and many efficient algorithms have been developed to solve it. We present a new, fast, general EMST algorithm, motivated by the clustering and analysis of astronomical data. Large-scale astronomical surveys, including the Sloan Digital Sky Survey, and large simulations of the early universe, such as the Millennium Simulation, can contain millions of points and fill terabytes of storage. Traditional EMST methods scale quadratically, and more advanced methods lack rigorous runtime guarantees. We present a new dual-tree algorithm for efficiently computing the EMST, use adaptive algorithm analysis to prove the tightest (and possibly optimal) runtime bound for the EMST problem to-date, and demonstrate the scalability of our method on astronomical data sets.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: