Fast Query Execution for Retrieval Models Based on Path-Constrained Random Walks

author: Ni Lao, Language Technologies Institute, Carnegie Mellon University
published: Oct. 1, 2010,   recorded: July 2010,   views: 3022
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Many recommendation and retrieval tasks can be represented as proximity queries on a labeled directed graph, with typed nodes representing documents, terms, and metadata, and labeled edges representing the relationships between them. Recent work has shown that the accuracy of the widely-used random-walk-based proximity measures can be improved by supervised learning - in particular, one especially effective learning technique is based on Path-Constrained Random Walks (PCRW), in which similarity is defined by a learned combination of constrained random walkers, each constrained to follow only a particular sequence of edge labels away from the query nodes. The PCRW based method significantly outperformed unsupervised random walk based queries, and models with learned edge weights. Unfortunately, PCRW query systems are expensive to evaluate. In this study we evaluate the use of approximations to the computation of the PCRW distributions, including fingerprinting, particle filtering, and truncation strategies. In experiments on several recommendation and retrieval problems using two large scientific publications corpora we show speedups of factors of 2 to 100 with little loss in accuracy.

See Also:

Download slides icon Download slides: kdd2010_lao_fer_01.pdf (450.5┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: