Data Mining to Predict and Prevent Errors in Health Insurance Claims Processing

author: Mohit Kumar, Language Technologies Institute, Carnegie Mellon University
published: Oct. 1, 2010,   recorded: July 2010,   views: 4748
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Health insurance costs across the world have increased alarmingly in recent years. A major cause of this increase are payment errors made by the insurance companies while processing claims. These errors often result in extra administrative effort to re-process (or rework) the claim which accounts for up to 30% of the administrative staff in a typical health insurer. We describe a system that helps reduce these errors using machine learning techniques by predicting claims that will need to be reworked, generating explanations to help the auditors correct these claims, and experiment with feature selection, concept drift, and active learning to collect feedback from the auditors to improve over time. We describe our framework, problem formulation, evaluation metrics, and experimental results on claims data from a large US health insurer. We show that our system results in an order of magnitude better precision (hit rate) over existing approaches which is accurate enough to potentially result in over $15-25 million in savings for a typical insurer. We also describe interesting research problems in this domain as well as design choices made to make the system easily deployable across health insurance companies.

See Also:

Download slides icon Download slides: kdd2010_kumar_dmppeh_01.ppt (1.2┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: