Semi-supervised Feature Selection for Graph Classification

author: Xiangnan Kong, Department of Computer Science, Worcester Polytechnic Institute
published: Oct. 1, 2010,   recorded: July 2010,   views: 4532
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

The problem of graph classification has attracted great interest in the last decade. Current research on graph classification assumes the existence of large amounts of labeled training graphs. However, in many applications, the labels of graph data are very expensive or difficult to obtain, while there are often copious amounts of unlabeled graph data available. In this paper, we study the problem of semi-supervised feature selection for graph classification and propose a novel solution, called gSSC, to efficiently search for optimal subgraph features with labeled and unlabeled graphs. Different from existing feature selection methods in vector spaces which assume the feature set is given, we perform semi-supervised feature selection for graph data in a progressive way together with the subgraph feature mining process. We derive a feature evaluation criterion, named gSemi, to estimate the usefulness of subgraph features based upon both labeled and unlabeled graphs. Then we propose a branch-and-bound algorithm to efficiently search for optimal subgraph features by judiciously pruning the subgraph search space. Empirical studies on several real-world tasks demonstrate that our semi-supervised feature selection approach can effectively boost graph classification performances with semi-supervised feature selection and is very efficient by pruning the subgraph search space using both labeled and unlabeled graphs.

See Also:

Download slides icon Download slides: kdd2010_kong_ssfs_01.pdf (1.4 MB)

Download slides icon Download slides: kdd2010_kong_ssfs_01.ppt (5.1 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: