Combining Predictions for Accurate Recommender Systems

author: Michael Jahrer, commendo research & consulting GmbH
published: Oct. 1, 2010,   recorded: July 2010,   views: 5225
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We analyze the application of ensemble learning to recommender systems on the Netflix Prize dataset. For our analysis we use a set of diverse state-of-the-art collaborative filtering (CF) algorithms, which include: SVD, Neighborhood Based Approaches, Restricted Boltzmann Machine, Asymmetric Factor Model and Global Effects. We show that linearly combining (blending) a set of CF algorithms increases the accuracy and outperforms any single CF algorithm. Furthermore, we show how to use ensemble methods for blending predictors in order to outperform a single blending algorithm. The dataset and the source code for the ensemble blending are available online.

See Also:

Download slides icon Download slides: kdd2010_jahrer_cpar_01.pdf (951.4 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: