An Energy-Efficient Mobile Recommender System

author: Yong Ge, Rutgers, The State University of New Jersey
published: Oct. 1, 2010,   recorded: July 2010,   views: 3908
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

The increasing availability of large-scale location traces creates unprecedent opportunities to change the paradigm for knowledge discovery in transportation systems. A particularly promising area is to extract energy-efficient transportation patterns (green knowledge), which can be used as guidance for reducing inefficiencies in energy consumption of transportation sectors. However, extracting green knowledge from location traces is not a trivial task. Conventional data analysis tools are usually not customized for handling the massive quantity, complex, dynamic, and distributed nature of location traces. To that end, in this paper, we provide a focused study of extracting energy-efficient transportation patterns from location traces. Specifically, we have the initial focus on a sequence of mobile recommendations. As a case study, we develop a mobile recommender system which has the ability in recommending a sequence of pick-up points for taxi drivers or a sequence of potential parking positions. The goal of this mobile recommendation system is to maximize the probability of business success. Along this line, we provide a Potential Travel Distance (PTD) function for evaluating each candidate sequence. This PTD function possesses a monotone property which can be used to effectively prune the search space. Based on this PTD function, we develop two algorithms, LCP and SkyRoute, for finding the recommended routes. Finally, experimental results show that the proposed system can provide effective mobile sequential recommendation and the knowledge extracted from location traces can be used for coaching drivers and leading to the efficient use of energy.

See Also:

Download slides icon Download slides: kdd2010_ge_aee_01.pdf (1.2┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: