GLS-SOD: A Generalized Local Statistical Approach for Spatial Outlier Detection

author: Feng Chen, College of Computing and Information (CCI), University at Albany, State University of New York
published: Oct. 1, 2010,   recorded: July 2010,   views: 3401
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Local based approach is a major category of methods for spatial outlier detection (SOD). Currently, there is a lack of systematic analysis on the statistical properties of this framework. For example, most methods assume identical and independent normal distributions (i.i.d. normal) for the calculated local differences, but no justifications for this critical assumption have been presented. The methods' detection performance on geostatistic data with linear or nonlinear trend is also not well studied. In addition, there is a lack of theoretical connections and empirical comparisons between local and global based SOD approaches. This paper discusses all these fundamental issues under the proposed Generalized Local Statistical (GLS) framework. Furthermore, robust estimation and outlier detection methods are designed for the new GLS model. Extensive simulations demonstrated that the SOD method based on the GLS model significantly outperformed all existing approaches when the spatial data exhibits a linear or nonlinear trend.

See Also:

Download slides icon Download slides: kdd2010_chen_glssod_01.pdf (723.0┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: