Unsupervised Feature Selection for Multi-Cluster Data

author: Deng Cai, College of Computer Science, Zhejiang University
published: Oct. 1, 2010,   recorded: July 2010,   views: 6382
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

In many data analysis tasks, one is often confronted with very high dimensional data. Feature selection techniques are designed to find the relevant feature subset of the original features which can facilitate clustering, classification and retrieval. In this paper, we consider the feature selection problem in unsupervised learning scenario, which is particularly difficult due to the absence of class labels that would guide the search for relevant information. The feature selection problem is essentially a combinatorial optimization problem which is computationally expensive. Traditional unsupervised feature selection methods address this issue by selecting the top ranked features based on certain scores computed independently for each feature. These approaches neglect the possible correlation between different features and thus can not produce an optimal feature subset. Inspired from the recent developments on manifold learning and L1-regularized models for subset selection, we propose in this paper a new approach, called {\em Multi-Cluster Feature Selection} (MCFS), for unsupervised feature selection. Specifically, we select those features such that the multi-cluster structure of the data can be best preserved. The corresponding optimization problem can be efficiently solved since it only involves a sparse eigen-problem and a L1-regularized least squares problem. Extensive experimental results over various real-life data sets have demonstrated the superiority of the proposed algorithm.

See Also:

Download slides icon Download slides: kdd2010_cai_ufsm_01.pdf (1.7 MB)

Download slides icon Download slides: kdd2010_cai_ufsm_01.ppt (7.1 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: