Optimizing Debt Collections Using Constrained Reinforcement Learning

author: Naoki Abe, IBM Thomas J. Watson Research Center
published: Oct. 1, 2010,   recorded: July 2010,   views: 5342

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


The problem of optimally managing the collections process by taxation authorities is one of prime importance, not only for the revenue it brings but also as a means to administer a fair taxing system. The analogous problem of debt collections management in the private sector, such as banks and credit card companies, is also increasingly gaining attention. With the recent successes in the applications of data analytics and optimization to various business areas, the question arises to what extent such collections processes can be improved by use of leading edge data modeling and optimization techniques. In this paper, we propose and develop a novel approach to this problem based on the framework of constrained Markov Decision Process (MDP), and report on our experience in an actual deployment of a tax collections optimization system at New York State Department of Taxation and Finance (NYS DTF).

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: