Toward Autonomic Grids: Analyzing the Job Flow with Affinity Streaming
published: Sept. 14, 2009, recorded: June 2009, views: 4320
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
The Affinity Propagation (AP) clustering algorithm proposed by Frey and Dueck (2007) provides an understandable, nearly optimal summary of a dataset, albeit with quadratic computational complexity. This paper, motivated by Autonomic Computing, extends AP to the data streaming framework. Firstly a hierarchical strategy is used to reduce the complexity to ${\cal O}(N^{1+\e})$; the distortion loss incurred is analyzed in relation with the dimension of the data items. Secondly, a coupling with a change detection test is used to cope with non-stationary data distribution, and rebuild the model as needed. The presented approach StrAP is applied to the stream of jobs submitted to the EGEE Grid, providing an understandable description of the job flow and enabling the system administrator to spot online some sources of failures.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: