Adapting the Right Measures for K-Means Clustering

author: Junjie Wu, Agricultural and Resource Economics Department, Oregon State University
published: Sept. 14, 2009,   recorded: June 2009,   views: 580
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Clustering validation is a long standing challenge in the clustering literature. While many validation measures have been developed for evaluating the performance of clustering algorithms, these measures often provide inconsistent information about the clustering performance and the best suitable measures to use in practice remain unknown. This paper thus fills this crucial void by giving an organized study of 16 external validation measures for K-means clustering. Specifically, we first introduce the importance of measure normalization in the evaluation of the clustering performance on data with imbalanced class distributions. We also provide normalization solutions for several measures. In addition, we summarize the major properties of these external measures. These properties can serve as the guidance for the selection of validation measures in different application scenarios. Finally, we reveal the interrelationships among these external measures. By mathematical transformation, we show that some validation measures are equivalent. Also, some measures have consistent validation performances. Most importantly, we provide a guide line to select the most suitable validation measures for K-means clustering.

See Also:

Download slides icon Download slides: kdd09_wu_atrm_01.ppt (5.7┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: