Feature Shaping for Linear SVM Classifiers

author: Martin Scholz, HP Labs, Palo Alto, HP Labs
published: Sept. 14, 2009,   recorded: June 2009,   views: 3780


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Linear classifiers have been shown to be effective for many discrimination tasks. Irrespective of the learning algorithm itself, the final classifier has a weight to multiply by each feature. This suggests that ideally each input feature should be linearly correlated with the target variable (or anti-correlated), whereas raw features may be highly non-linear. In this paper, we attempt to re-shape each input feature so that it is appropriate to use with a linear weight and to scale the different features in proportion to their predictive value. We demonstrate that this pre-processing is beneficial for linear SVM classifiers on a large benchmark of text classification tasks as well as UCI datasets.

See Also:

Download slides icon Download slides: kdd09_scholz_fslsvmc_01.ppt (3.4┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: