Characterizing Individual Communication Patterns

author: Robert Dean Malmgren, Department of Chemical and Biological Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University
published: Sept. 14, 2009,   recorded: June 2009,   views: 3717


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


The increasing availability of electronic communication data, such as that arising from e-mail exchange, presents social and information scientists with new possibilities for characterizing individual behavior and, by extension, identifying latent structure in human populations. Here, we propose a model of individual e-mail communication that is sufficiently rich to capture meaningful variability across individuals, while remaining simple enough to be interpretable. We show that the model, a cascading non-homogeneous Poisson process, can be formulated as a double-chain hidden Markov model, allowing us to use an efficient inference algorithm to estimate the model parameters from observed data. We then apply this model to two e-mail data sets consisting of 404 and 6,164 users, respectively, that were collected from two universities in different countries and years. We find that the resulting best-estimate parameter distributions for both data sets are surprisingly similar, indicating that at least some features of communication dynamics generalize beyond specific contexts. We also find that variability of individual behavior over time is significantly less than variability across the population, suggesting that individuals can be classified into persistent "types". We conclude that communication patterns may prove useful as an additional class of attribute data, complementing demographic and network data, for user classification and outlier detection---a point that we illustrate with an interpretable clustering of users based on their inferred model parameters.

See Also:

Download slides icon Download slides: kdd09_malmgren_cic_01.pdf (1.9┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: