Meme-tracking and the dynamics of the news cycle

author: Jure Leskovec, Computer Science Department, Stanford University
published: Sept. 14, 2009,   recorded: June 2009,   views: 828
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Tracking new topics, ideas, and "memes" across the Web has been an issue of considerable interest. Recent work has developed methods for tracking topic shifts over long time scales, as well as abrupt spikes in the appearance of particular named entities. However, these approaches are less well suited to the identification of content that spreads widely and then fades over time scales on the order of days --- the time scale at which we perceive news and events.

We develop a framework for tracking short, distinctive phrases that travel relatively intact through on-line text; developing scalable algorithms for clustering textual variants of such phrases, we identify a broad class of memes that exhibit wide spread and rich variation on a daily basis. As our principal domain of study, we show how such a meme-tracking approach can provide a coherent representation of the news cycle --- the daily rhythms in the news media that have long been the subject of qualitative interpretation but have never been captured accurately enough to permit actual quantitative analysis. We tracked 1.6 million mainstream media sites and blogs over a period of three months with the total of 90 million articles and we find a set of novel and persistent temporal patterns in the news cycle. In particular, we observe a typical lag of 2.5 hours between the peaks of attention to a phrase in the news media and in blogs respectively, with divergent behavior around the overall peak and a ``heartbeat''-like pattern in the handoff between news and blogs. We also develop and analyze a mathematical model for the kinds of temporal variation that the system exhibits.

See Also:

Download slides icon Download slides: kdd09_leskovec_mtatd_01.pdf (1.9┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: