Genre-Based Decomposition of Email Class Noise

author: Aleksander Kołcz, Twitter, Inc.
published: Sept. 14, 2009,   recorded: June 2009,   views: 3005


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Corruption of data by class-label noise is an important practical concern impacting many classification problems. Studies of data cleaning techniques often assume a uniform label noise model, however, which is seldom realized in practice. Relatively little is understood, as to how the natural label noise distribution can be measured or simulated. Using email spam-filtering data, we demonstrate that class noise can have substantial content specific bias. We also demonstrate that noise detection techniques based on classifier confidence tend to identify instances that human assessors are likely to label in error. We show that genre modeling can be very informative in identifying potential areas of mislabeling. Moreover, we are able to show that genre decomposition can also be used to substantially improve spam filtering accuracy, with our results outperforming the best published figures for the trec05-p1 and ceas-2008 benchmark collections.

See Also:

Download slides icon Download slides: kdd09_kolcz_gbdecn_01.ppt (413.5 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: