Exploiting Wikipedia as External Knowledge for Document Clustering

author: Xiaohua Tony Hu, iSchool at Drexel - College of Information Science and Technology, Drexel University
published: Sept. 14, 2009,   recorded: July 2009,   views: 250
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

In traditional text clustering methods, documents are represented as bags of words without considering the semantic information of each document. For instance, if two documents use different collections of core words to represent the same topic, they may be falsely assigned to different clusters due to the lack of shared core words, although the core words they use are probably synonyms or semantically associated in other forms. The most common way to solve this problem is to enrich document representation with the background knowledge in an ontology. There are two major issues for this approach: (1) the coverage of the ontology is limited, even for WordNet or Mesh, (2) using ontology terms as replacement or additional features may cause information loss, or introduce noise. In this paper, we present a novel text clustering method to address these two issues by enriching document representation with Wikipedia concept and category information. We develop two approaches, exact match and relatedness-match, to map text documents to Wikipedia concepts, and further to Wikipedia categories. Then the text documents are clustered based on a similarity metric which combines document content information, concept information as well as category information. The experimental results using the proposed clustering framework on three datasets (20-newsgroup, TDT2, and LA Times) show that clustering performance improves significantly by enriching document representation with Wikipedia concepts and categories.

See Also:

Download slides icon Download slides: kdd09_hu_ewaek_01.ppt (2.8┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: