Collusion-Resistant Anonymous Data Collection Method
published: Sept. 14, 2009, recorded: June 2009, views: 3916
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
The availability and the accuracy of the data dictate the success of a data mining application. Increasingly, there is a need to resort to on-line data collection to address the problem of data availability. However, participants in on-line data collection applications are naturally distrustful of the data collector as well as their peer respondents, resulting in inaccurate data collected as the respondents refuse to provide truthful data in fear of collusion attacks. The current anonymity-preserving solutions for on-line data collection are unable to adequately resist such attacks in a scalable fashion. In this paper, we present an efficient anonymous data collection protocol for a malicious environment such as the Internet. The protocol employs cryptographic and random shuffling techniques to preserve participants' anonymity. The proposed method is collusion-resistant and guarantees that an attacker will be unable to breach an honest participant's anonymity unless she controls all N-1 participants. In addition, our method is efficient and achieved 15-42% communication overhead reduction in comparison to the prior state-of-the-art methods.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: