Mobile Call Graphs: Beyond Power-Law and Lognormal Distributions

author: Mukund Seshadri, Sprint Labs
published: Sept. 26, 2008,   recorded: August 2008,   views: 5474

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We analyze a massive social network, gathered from the records of a large mobile phone operator, with more than a million users and tens of millions of calls. We examine the distributions of the number of phone calls per customer; the total talk minutes per customer; and the distinct number of calling partners per customer. We find that these distributions are skewed, and that they significantly deviate from what would be expected by power-law and lognormal distributions.

To analyze our observed distributions (of number of calls, distinct call partners, and total talk time), we propose PowerTrack , a method which fits a lesser known but more suitable distribution, namely the Double Pareto LogNormal (DPLN) distribution, to our data and track its parameters over time. Using PowerTrack , we find that our graph changes over time in a way consistent with a generative process that naturally results in the DPLN distributions we observe. Furthermore, we show that this generative process lends itself to a natural and appealing social wealth interpretation in the context of social networks such as ours. We discuss the application of those results to our model and to forecasting.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: