Local Decomposition for Rare Class Analysis

author: Junjie Wu, Oregon State University
published: Aug. 14, 2007,   recorded: August 2007,   views: 3134

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Given its importance, the problem of predicting rare classes in large-scale multi-labeled data sets has attracted great attentions in the literature. However, the rare-class problem remains a critical challenge, because there is no natural way developed for handling imbalanced class distributions. This paper thus fills this crucial void by developing a method for Classification using lOcal clusterinG (COG). Specifically, for a data set with an imbalanced class distribution, we perform clustering within each large class and produce sub-classes with relatively balanced sizes. Then, we apply traditional supervised learning algorithms, such as Support Vector Machines (SVMs), for classification. Indeed, our experimental results on various real-world data sets show that our method produces significantly higher prediction accuracies on rare classes than state-of-the-art methods. Furthermore, we show that COG can also improve the performance of traditional supervised learning algorithms on data sets with balanced class distributions.

See Also:

Download slides icon Download slides: kdd07_wu_ldrc_01.ppt (1.5┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: