Temporal Causal Modeling with Graphical Granger Methods

author: Andrew Arnold, Carnegie Mellon University
published: Aug. 22, 2007,   recorded: August 2007,   views: 981
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

The need for mining causality, beyond mere statistical correlations, for real world problems has been recognized widely. Many of these applications naturally involve temporal data, which raises the challenge of how best to leverage the temporal information for causal modeling. Recently graphical modeling with the concept of “Granger causality”, based on the intuition that a cause helps predict its effects in the future, has gained attention in many domains involving time series data analysis. With the surge of interest in model selection methodologies for regression, such as the Lasso, as practical alternatives to solving structural learning of graphical models, the question arises whether and how to combine these two notions into a practically viable approach for temporal causal modeling. In this paper, we examine a host of related algorithms that, loosely speaking, fall under the category of graphical Granger methods, and characterize their relative performance from multiple viewpoints. Our experiments show, for instance, that the Lasso algorithm exhibits consistent gain over the canonical pairwise graphical Granger method. We also characterize conditions under which these variants of graphical Granger methods perform well in comparison to other benchmark methods. Finally, we apply these methods to a real world data set involving key performance indicators of corporations, and present some concrete results.

See Also:

Download slides icon Download slides: kdd2007_r2_andrew_arnold.ppt (1.3 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: