Towards Empty Answers in SPARQL: Approximating Querying with RDF Embedding

author: Wang-Meng Zuo, Harbin Institute of Technology
published: Nov. 22, 2018,   recorded: October 2018,   views: 286

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


The LOD cloud offers a plethora of RDF data sources where users discover items of interest by issuing SPARQL queries. A common query problem for users is to face with empty answers: given a SPARQL query that returns nothing, how to refine the query to obtain a non-empty set? In this paper, we propose an RDF graph embedding based framework to solve the SPARQL empty-answer problem in terms of a continuous vector space. We first project the RDF graph into a continuous vector space by an entity context preserving translational embedding model which is specially designed for SPARQL queries. Then, given a SPARQL query that returns an empty set, we partition it into several parts and compute approximate answers by leveraging RDF embeddings and the translation mechanism. We also generate logical and alternative queries for returned answers, which helps users recognize their expectations and refine the original query finally. To validate the effectiveness and efficiency of our framework, we conduct extensive experiments on the real-world RDF dataset. The results show that our framework can significantly improve the quality of approximate answers and speed up the generation of alternative queries.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: