Integrating Medical Scientific Knowledge with the Semantically Quantified Self

author: Allan Third, Knowledge Media Institute (KMI), Open University (OU)
published: Nov. 10, 2016,   recorded: October 2016,   views: 1143


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


The assessment of risk in medicine is a crucial task, and depends on scientific knowledge derived by systematic clinical studies on factors affecting health, as well as on particular knowledge about the current status of a particular patient. Existing non-semantic risk prediction tools are typically based on hardcoded scientific knowledge, and only cover a very limited range of patient states. This makes them rapidly out of date, and limited in application, particularly for patients with multiple co-occurring conditions. In this work we propose an integration of Semantic Web and Quantified Self technologies to create a framework for calculating clinical risk predictions for patients based on self-gathered biometric data. This framework relies on generic, reusable ontologies for representing clinical risk, and sensor readings, and reasoning to support the integration of data represented according to these ontologies. The implemented framework shows a wide range of advantages over existing risk calculation.

See Also:

Download slides icon Download slides: iswc2016_third_scientific_knowledge_01.pdf (1.1┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: