SHELDON: Semantic Holistic framEwork for LinkeD ONtology data

author: Diego Reforgiato Recupero, Institute of Cognitive Sciences and Technologies (ISTC)
published: Dec. 19, 2014,   recorded: October 2014,   views: 2219


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


SHELDON is the first true hybridization of NLP machine reading and Semantic Web. It is a framework that builds upon a ma- chine reader for extracting RDF graphs from text so that the output is compliant to Semantic Web and Linked Data patterns. It extends the current human-readable web by using Semantic Web practices and technologies in a machine-processable form. Given a sentence in any language, it provides different semantic functionalities (frame detection, topic extraction, named entity recognition, resolution and coreference, terminology extraction, sense tagging and disambiguation, taxonomy induction, semantic role labeling, type induction, sentiment analysis, citation inference, relation and event extraction) as well as nice visualization tools which make use of the JavaScript infoVis Toolkit and RelFinder, as well as a knowledge enrichment component that extends machine reading to Semantic Web data. The system can be freely used at

See Also:

Download slides icon Download slides: iswc2014_reforgiato_recupero_sheldon_01.pdf (813.2┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: