Holistic and Compact Selectivity Estimation for Hybrid Queries over RDF Graphs

author: Freddy Lecue, IBM Research Ireland
published: Dec. 19, 2014,   recorded: October 2014,   views: 1601


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Many RDF descriptions today are text-rich: besides struc- tured data they also feature much unstructured text. Text-rich RDF data is frequently queried via predicates matching structured data, combined with string predicates for textual constraints (hybrid queries). Evaluating hybrid queries eficiently requires means for selectivity estimation. Previous works on selectivity estimation, however, sufer from inherent drawbacks, which are reflected in eficiency and efectiveness issues. We propose a novel estimation approach, TopGuess, which exploits topic models as data synopsis. This way, we capture correlations between structured and unstructured data in a holistic and compact manner. We study TopGuess in a theoretical analysis and show it to guarantee a linear space complexity w.r.t. text data size. Further, we show selectivity estimation time complexity to be independent from the synopsis size. In experiments on real-world data, TopGuess allowed for great improvements in estimation accuracy, without sacrificing eficiency.

See Also:

Download slides icon Download slides: iswc2014_lecue_holistic_and_compact_01.pdf (1.1┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: