Link prediction for annotation graph datasets using graph summarization

author: Andreas Thor, University of Maryland
published: Nov. 25, 2011,   recorded: October 2011,   views: 2942


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Annotation graph datasets are a natural representation of scientifi c knowledge. They are common in the life sciences where genes or proteins are annotated with controlled vocabulary terms (CV terms) from ontologies. The W3C Linking Open Data (LOD) initiative and semantic Web technologies are playing a leading role in making such datasets widely available. Scientists can mine these datasets to discover patterns of annotation. While ontology alignment and integration across datasets has been explored in the context of the semantic Web, there is no current approach to mine such patterns in annotation graph datasets. In this paper, we propose a novel approach for link prediction; it is a preliminary task when discovering more complex patterns. Our prediction is based on a complementary methodology of graph summarization (GS) and dense subgraphs (DSG). GS can exploit and summarize knowledge captured within the ontologies and in the annotation patterns. DSG uses the ontology structure, in particular the distance between CV terms, to filter the graph, and to find promising subgraphs. We develop a scoring function based on multiple heuristics to rank the predictions. We perform an extensive evaluation on Arabidopsis thaliana genes.

See Also:

Download slides icon Download slides: iswc2011_thor_graph_01.pdf (1.3┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: